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Chaotic Wannier-Bloch resonance states

M. Gluck, A. R. Kolovsky? and H. J. Korsch
Fachbereich Physik, Universitaaiserslautern, D-67653 Kaiserslautern, Germany
(Received 24 June 1998

The Wannier-Bloch resonance states are metastable states of a quantum particle in a space-periodic potential
plus a homogeneous field. Here we analyze the states of quantum particle insspiti®e-periodic potential.
In this case the dynamics of the classical counterpart of the quantum system is either quasiregular or chaotic
depending on the driving frequency. It is shown that both the quasiregular and the chaotic motion can also
support quantum resonances. The relevance of the obtained result to the problem of a crystal electron under
simultaneous influence of dc and ac electric fields is briefly discu$Sa®963-651X%98)09010-7

PACS numbes): 05.45+b, 73.20.Dx, 73.40.Gk

Probing of a quantum system with an electric field isonly (however importantrestriction we impose ow is that
widely used in experimental physics. If the system has ahe periodT ,=2#/w should be rational to the Bloch period
number of discrete levelavhich are associated with classi- Tg=#/F, i.e., Tg/T,=r/qg. This condition allows us to em-
cally bounded motionfollowed by a continuous spectrum ploy the formalism of quasimomentufs], which essentially
(associated with unbounded motjatihen after applying an simplifies the problem. To calculate the metastable states we
electric field the discrete energy states become metastablese the numerical method proposed in Héfl. Using this
The decay time of a metastable state is determined by theaethod one finds the metastable Wannier-Bloch states by
probability of tunneling through the potential barrier separat-solving the eigenvalue problem for the system’s evolution
ing the regions of the classically bounded and unboundedperator over the common peridd=qTg=rT,:
motion. Examples are the states of a Rydberg atom or the

vibrational state of a dipole molecule in a strong electric U x k() =exd —iN(K) T/ATx k(X), (2
field.

The situation is more complicated if a particle should tun- ) A iqra i (T|(p+#k—Ft)?
nel throughmany barriers to escape from the regions of U~ =€ "&Xp — 5 | 2 +V(x.) |dty.

bounded motion. A famous example of such a system is the 3)
states of an electron in a crystal lattice in an external homo-
geneous field, which are known as metastable Wanniern Egs.(2) and(3) x; k(X) is the space-periodic part of the
Bloch states and Wannier-Stark stafg$ Although the cal- metastable Wannier-Bloch stage (x) = exp(kx)x; «(X) (I is
culation of the decay time for these states is a difficultthe band indexk is the quasimomentum;- 1/2<k<1/2),
problem [2], the physics behind the phenomenon is theU® is one of the possible representations of kagpecific
same—the resonances are supported by the regions of classstem evolution operator over the common pefibe caret
sically bounded motion. The question we address in this pagver the exponent sign denotes time ordexirand V(x,t)
per is, whether a quantum resonance state can be supportettoswt)cosx for the case considered here. Expanding
by something other than a bounded classical motion. To thig, ,(x) in the Fourier series,
end we introduce a model, which will be the subject of our .
stk xiX)= 3 clln),  [ny=(2m) Pexpinx),
H=p?/2+ coq wt)cosx+ Fx=Hy+ Fx. ) "
o we reduce the problem to diagonalizing of the matdi%%,
In Eq. (1) the HamlltonlanHo_corresponds to the s_o-c_allec_zl =(n|u®|n"). In the numerical calculation the matris,
double resonance model, which can show a chaotic diffusion . ..o
. : - IS truncated to the sizBXN. We note that the infinite ma-
in x for some interval of the driving frequenay [4]. The D . , o
diffusive motion is neither bounded nor ballistic, so the an-IiX Un o IS unitary, but the truncatech(n’<N) matrix is
swer to the question—if it can support resonances—is faPot unitary and, therefore, the eigenvaluegk) are com-
from obvious. plex. The key point of the method is that the eigenvectors of
It should be noted that the Hamiltoniéh) has an explicit the truncated matrixufﬂ, converge to the metastable
periodic dependence on time and, therefore, the notion dfVannier-Bloch states when the dimensidnncreaseg6].
energy states is substituted by the notion of quasienergy We begin with the case of a large driving frequensy
states. Below we discuss the metastable quasienergy states>®to., when the dynamics of the systeHy, is quasiregular
the system for different values of the driving frequency. The[see Fig. 1a)]. (The critical valuew., of the driving fre-
quency for a transition from quasiregular to chaotic dynam-
ics can be estimated using Chirikov's nonlinear resonance
*Also at L. V. Kirensky Institute of Physics, 660036 Krasnoyarsk, overlap criteria, which corresponds ¢g,~ 1 [7].) The force
Russia. F is adjusted to satisfy the resonance condition/a
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h it of th ; _ sponding to first four metastable Wannier-Bloch states of the sys-
FIG. 1. Phase space portrait 0 the syst(ah)) or _‘"N2'51 tem (1). The value of the driving frequency i®~2.51 (scaled
>wq~1 (a) and w=0.3<w (b). 18 different trajectoriep(t,), Planck constant = 0.5, F =% w/27=0.2).

X(tn) mod:2r » th=NT+T/4 are plotted in each case. !

B . complex conjugation and x—x+, t—t+T/2. The nu-
=h/F=T and #=0.5 is used throughout the paper. FOr nerical results depicted in Fig. 2 shows that f@r o, the
w> w the dynamics of the systefd) can be approximately amjitonian (1) supports metastable states. This is actually

described by the effective Hamiltonian not surprising, because in the frame moving with the velocity
2 4 * w the classical trajectory undergoes a bounded oscillation.
H<+,—>:p_+ —cogXF wt) +FX, (4 ~ The main deviation from the case of the “running wave”
2 2 Hamiltonian (4) is that now the bands; in Eq. (5) gain a

i i finite width, which is well seen in the large scale figure of the
where the plus and minus sign refers to the upper and |0W%1aginary part of the quasienergy.
half planes of phase space. By substitutiig=x+ wt the We proceed with the case< w [see Fig. 1b)]. In this
Hamiltonian (4,) |sztransforme’d o the time-independent ca5e the phase space of the classical counterpart of the sys-
Hamiltonian H' =p®/2+0.5cos’ +Fx’ and the known re- e (1) for F=0 consists of two components—a chaotic
sults for Wannier states can be used. Namelyel¢o be the  component in the form of a strip along theaxis, and a
spectrum of the Wannier-Bloch stafese remind the reader yegylar component surrounding the chaotic redigh Since
that the energy bands of the Wannier-Bloch states are degefhe chaotic and regular components are separated by an in-
erate, i.e./(k)=¢], then the quasienergy spectrum of theariant curve, a trajectory with an initial condition belonging

system(4) has the form to the chaotic component stays there forever. Fer0 the
5 5 T invariant curve does not exist and a particle always escapes
RN (K)]= _[ i +Re 6|])— = Zwk] , from the chaotic strip to the region of the unbounded regular
T 2 h mod:2m
L3 0.3
Im[A (k) ]=Im[€]. 5 T T
The term 27k in Eq. (5) has a simple physical meaning. In AV
fact, similar to the case of a time-independent potential, we 0.2
can construct from the extended Bloch-like functighg(x) d &
a set of localized state®| ,,(x) = fdkexp27mK) i (X). 2 o 2
Then the presence of the termrR denotes that the localized :ﬁ :,.
state¥| (x) moves one lattice period to the right or left per 3 PN <
period of the driving frequency. e Zo.1
In view of the above, the spectrum of the systé&tnfor T N
large w should be a symmetric net of parallel lines with
positive and negative slopes. The numerical result confirms
this prediction(see Fig. 2. We also note that that the spec- - 0.0
trum, independent of the value of the driving frequency, pos- -0.5 01}:0 0.5 -0.5 01;0 0.5

sesses the approximate symmetrigg(—k))=(\(k)) and

(Mi(k+ 1/2)>f<7\|(k)+ﬁw/2> (here angular brackets stand  FiG. 3. Same as Fig. 2 but fo=0.3<wy, F=fw/2m

for a set of eigenvalues for givex). These symmetrle_s are a ~0.02.(The imaginary part is shown only for two upper bands. For
consequence of the exact symmetries of the evolution opergewer bands the curves should be shifted by one-half of the Bril-
tor (3) under the transformations— —t (accomplished by louin zone)
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FIG. 4. Integrated distribution function for the decay timeg FIG. 5. Probability for a classical and quantum particle to stay
=#/21m[\,(k)] of the quantum metastable states for the param-within the chaotic componenp|<1.8 (»=0.3,F~0.02). Dotted
eters of Fig. 3. The vertical line shows the value of the classicaline: classical result, solid line: quantum result provided the condi-
decay timery=15.2 T. tion Tg=T, (A#=0.5), dashed line: “incommensurate” casg (

=0.5109531). In the quantum case the curves were obtained by
motion. However, the escape time can be very large. Theimulating wave packet dynamics with minimal uncertainty packet
numerical simulation of the classical dynamics of the systengentered ak=0, p=0 as an initial condition.
(1) gives an exponential distribution for the escape timet
P(t) ~exp(-t/7y) (see Fig. 5, dotted linewherer, tends to
infinity as F tends to zero. This result gives us a hint that in
the quantum case the Hamiltonidath) could also support
metastable states.

Figure 3 shows the real and imaginary parts\gfk) for

four most stable quasienergy bands. It is seen that the imagg— del of | el bi q d lectri
nary part is small, thus, the Hamiltonid) does support @ model of a crystal electron subject to dc and ac electric

metastable states. Moreover, we have found the decay tin@eld)' Using the Kr’aTers—Hen?erberge_r transformatgin
Tq=7/21m[\ (k)] of the quantum metastable state to be =P+ (s/w)sin(wt), X" =Xx—(e/w")cos() it is easy to show
surprisingly large in comparison with the classical decayth@t the systent6) is equivalent to a Hamiltonian

o support long-lived resonances in the quantum case. This
result was obtained for the model systdi), which we
chose because of its relative simplicity. A more common
system corresponds to the Hamiltonian

H=p?/2+ cosx+ Fx+ ex cog wt) (6)

time 7. Figure 4 shows the integrated distribution function p? e
I(7qy) for the decay timesy, of the quantum stateg, \(x) H=—+ coa{x+ —,cog wt) | +FX, )
irrespectively to band index and quasimomentum in semi- 2 )

logarithmic scale. It is seen thag, can exceed, by several which also generates chaotic dynamics 0F () (see

orders of magnitude. Thus we encounter a quantum Stab"tlo], for example. Thus the obtained result is also valid for

zation phenomenofsee Fig. 5, solid line We would like to ! . .
stress that the quantum stabilization discussed is a kind c}.e syst.en(6) in the regime of developed chaos. A deta|Ied.
iscussion of the metastable state of the latter system is

guantum interference phenomenon, sensitive to the comme lanned to be a subject of a forthcoming pafkt]
surability condition Tg/T,=r/g. In the incommensurate P J gp )

case the stabilization is absdi.
In conclusion, the main result of the paper is the demon- This work was supported by the DFG through Grant No.
stration of the fact that the chaotic unbounded motion is abl&SSP 470.
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