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Chaotic Wannier-Bloch resonance states

M. Glück, A. R. Kolovsky,* and H. J. Korsch
Fachbereich Physik, Universita¨t Kaiserslautern, D-67653 Kaiserslautern, Germany

~Received 24 June 1998!

The Wannier-Bloch resonance states are metastable states of a quantum particle in a space-periodic potential
plus a homogeneous field. Here we analyze the states of quantum particle in space-and time-periodic potential.
In this case the dynamics of the classical counterpart of the quantum system is either quasiregular or chaotic
depending on the driving frequency. It is shown that both the quasiregular and the chaotic motion can also
support quantum resonances. The relevance of the obtained result to the problem of a crystal electron under
simultaneous influence of dc and ac electric fields is briefly discussed.@S1063-651X~98!09010-2#

PACS number~s!: 05.45.1b, 73.20.Dx, 73.40.Gk
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Probing of a quantum system with an electric field
widely used in experimental physics. If the system ha
number of discrete levels~which are associated with class
cally bounded motion! followed by a continuous spectrum
~associated with unbounded motion! then after applying an
electric field the discrete energy states become metast
The decay time of a metastable state is determined by
probability of tunneling through the potential barrier separ
ing the regions of the classically bounded and unboun
motion. Examples are the states of a Rydberg atom or
vibrational state of a dipole molecule in a strong elect
field.

The situation is more complicated if a particle should tu
nel throughmany barriers to escape from the regions
bounded motion. A famous example of such a system is
states of an electron in a crystal lattice in an external hom
geneous field, which are known as metastable Wann
Bloch states and Wannier-Stark states@1#. Although the cal-
culation of the decay time for these states is a diffic
problem @2#, the physics behind the phenomenon is t
same—the resonances are supported by the regions of
sically bounded motion. The question we address in this
per is, whether a quantum resonance state can be supp
by something other than a bounded classical motion. To
end we introduce a model, which will be the subject of o
study @3#:

H5p2/21cos~vt !cosx1Fx[H01Fx. ~1!

In Eq. ~1! the HamiltonianH0 corresponds to the so-calle
double resonance model, which can show a chaotic diffus
in x for some interval of the driving frequencyv @4#. The
diffusive motion is neither bounded nor ballistic, so the a
swer to the question—if it can support resonances—is
from obvious.

It should be noted that the Hamiltonian~1! has an explicit
periodic dependence on time and, therefore, the notion
energy states is substituted by the notion of quasiene
states. Below we discuss the metastable quasienergy sta
the system for different values of the driving frequency. T
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only ~however important! restriction we impose onv is that
the periodTv52p/v should be rational to the Bloch perio
TB5\/F, i.e.,TB /Tv5r /q. This condition allows us to em
ploy the formalism of quasimomentum@5#, which essentially
simplifies the problem. To calculate the metastable states
use the numerical method proposed in Ref.@6#. Using this
method one finds the metastable Wannier-Bloch states
solving the eigenvalue problem for the system’s evolut
operator over the common periodT5qTB5rTv :

U ~k!x l ,k~x!5exp@2 il l~k!T/\#x l ,k~x!, ~2!

U ~k!5e2 iqxexp̂H 2
i

\E0

TF ~ p̂1\k2Ft !2

2
1V~x,t !GdtJ .

~3!

In Eqs. ~2! and ~3! x l ,k(x) is the space-periodic part of th
metastable Wannier-Bloch statec l ,k(x)5exp(ikx)xl,k(x) (l is
the band index,k is the quasimomentum,21/2,k,1/2),
U (k) is one of the possible representations of thek-specific
system evolution operator over the common period~the caret
over the exponent sign denotes time ordering!, and V(x,t)
5cos(vt)cosx for the case considered here. Expandi
x l ,k(x) in the Fourier series,

x l ,k~x!5 (
n52`

`

cn
~ l ,k!un&, un&5~2p!21/2exp~ inx!,

we reduce the problem to diagonalizing of the matrixUn,n8
(k)

5^nuU (k)un8&. In the numerical calculation the matrixUn,n8
(k)

is truncated to the sizeN3N. We note that the infinite ma
trix Un,n8

(k) is unitary, but the truncated (n,n8<N) matrix is
not unitary and, therefore, the eigenvaluesl l(k) are com-
plex. The key point of the method is that the eigenvectors
the truncated matrixUn,n8

(k) converge to the metastabl
Wannier-Bloch states when the dimensionN increases@6#.

We begin with the case of a large driving frequencyv
@vcr when the dynamics of the systemH0 is quasiregular
@see Fig. 1~a!#. ~The critical valuevcr of the driving fre-
quency for a transition from quasiregular to chaotic dyna
ics can be estimated using Chirikov’s nonlinear resona
overlap criteria, which corresponds tovcr'1 @7#.! The force
F is adjusted to satisfy the resonance condition 2p/v

,
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5\/F[T and \50.5 is used throughout the paper. F
v@vcr the dynamics of the system~1! can be approximately
described by the effective Hamiltonian

H ~1,2 !5
p2

2
1

1

2
cos~x7vt !1Fx, ~4!

where the plus and minus sign refers to the upper and lo
half planes of phase space. By substitutingx85x7vt the
Hamiltonian ~4! is transformed to the time-independe
Hamiltonian H85p2/210.5cosx81Fx8 and the known re-
sults for Wannier states can be used. Namely, lete l to be the
spectrum of the Wannier-Bloch states@we remind the reade
that the energy bands of the Wannier-Bloch states are de
erate, i.e.,e l(k)5e l#, then the quasienergy spectrum of t
system~4! has the form

Re@l l~k!#5
\

TH S v2

2
1Re@e l # DT

\
72pkJ

mod:2p

,

Im@l l~k!#5Im@e l #. ~5!

The term 2pk in Eq. ~5! has a simple physical meaning. I
fact, similar to the case of a time-independent potential,
can construct from the extended Bloch-like functionsc l ,k(x)
a set of localized statesC l ,m(x)5*dkexp(i2pmk)cl,k(x).
Then the presence of the term 2pk denotes that the localize
stateC l ,m(x) moves one lattice period to the right or left p
period of the driving frequency.

In view of the above, the spectrum of the system~1! for
large v should be a symmetric net of parallel lines wi
positive and negative slopes. The numerical result confi
this prediction~see Fig. 2!. We also note that that the spe
trum, independent of the value of the driving frequency, p
sesses the approximate symmetries^l l(2k)&5^l l(k)& and
^l l(k11/2)&5^l l(k)1\v/2& ~here angular brackets stan
for a set of eigenvalues for givenk). These symmetries are
consequence of the exact symmetries of the evolution op
tor ~3! under the transformationst→2t ~accomplished by

FIG. 1. Phase space portrait of the system~1! for v'2.51
.vcr;1 ~a! and v50.3,vcr ~b!. 18 different trajectoriesp(tn),
x(tn)mod:2p , tn5nT1T/4 are plotted in each case.
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complex conjugation! and x→x1p, t→t1T/2. The nu-
merical results depicted in Fig. 2 shows that forv.vcr the
Hamiltonian ~1! supports metastable states. This is actua
not surprising, because in the frame moving with the veloc
6v the classical trajectory undergoes a bounded oscillat
The main deviation from the case of the ‘‘running wave
Hamiltonian ~4! is that now the bandse l in Eq. ~5! gain a
finite width, which is well seen in the large scale figure of t
imaginary part of the quasienergy.

We proceed with the casev,vcr @see Fig. 1~b!#. In this
case the phase space of the classical counterpart of the
tem ~1! for F50 consists of two components—a chao
component in the form of a strip along thex-axis, and a
regular component surrounding the chaotic region@8#. Since
the chaotic and regular components are separated by a
variant curve, a trajectory with an initial condition belongin
to the chaotic component stays there forever. ForFÞ0 the
invariant curve does not exist and a particle always esca
from the chaotic strip to the region of the unbounded regu

FIG. 2. Real and imaginary parts of the quasienergies co
sponding to first four metastable Wannier-Bloch states of the s
tem ~1!. The value of the driving frequency isv'2.51 ~scaled
Planck constant\50.5, F5\v/2p50.2).

FIG. 3. Same as Fig. 2 but forv50.3,vcr , F5\v/2p
'0.02.~The imaginary part is shown only for two upper bands. F
lower bands the curves should be shifted by one-half of the B
louin zone.!
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motion. However, the escape time can be very large.
numerical simulation of the classical dynamics of the syst
~1! gives an exponential distribution for the escape ti
P(t);exp(2t/tcl) ~see Fig. 5, dotted line!, wheretcl tends to
infinity as F tends to zero. This result gives us a hint that
the quantum case the Hamiltonian~1! could also support
metastable states.

Figure 3 shows the real and imaginary parts ofl l(k) for
four most stable quasienergy bands. It is seen that the im
nary part is small, thus, the Hamiltonian~1! does support
metastable states. Moreover, we have found the decay
tqu5\/2 Im@l l(k)# of the quantum metastable state to
surprisingly large in comparison with the classical dec
time tcl . Figure 4 shows the integrated distribution functi
I (tqu) for the decay timestqu of the quantum statesc l ,k(x)
irrespectively to band index and quasimomentum in se
logarithmic scale. It is seen thattqu can exceedtcl by several
orders of magnitude. Thus we encounter a quantum sta
zation phenomenon~see Fig. 5, solid line!. We would like to
stress that the quantum stabilization discussed is a kin
quantum interference phenomenon, sensitive to the comm
surability condition TB /Tv5r /q. In the incommensurate
case the stabilization is absent@9#.

In conclusion, the main result of the paper is the dem
stration of the fact that the chaotic unbounded motion is a

FIG. 4. Integrated distribution function for the decay timestqu

5\/2 Im@l l(k)# of the quantum metastable states for the para
eters of Fig. 3. The vertical line shows the value of the class
decay timetcl515.2 T.
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to support long-lived resonances in the quantum case. T
result was obtained for the model system~1!, which we
chose because of its relative simplicity. A more comm
system corresponds to the Hamiltonian

H5p2/21cosx1Fx1«x cos~vt ! ~6!

~a model of a crystal electron subject to dc and ac elec
field!. Using the Kramers-Hennerberger transformationp8
5p1(«/v)sin(vt), x85x2(«/v2)cos(vt) it is easy to show
that the system~6! is equivalent to a Hamiltonian

H5
p2

2
1cosFx1

«

v2
cos~vt !G1Fx, ~7!

which also generates chaotic dynamics for«.«cr(v) ~see
@10#, for example!. Thus the obtained result is also valid fo
the system~6! in the regime of developed chaos. A detaile
discussion of the metastable state of the latter system
planned to be a subject of a forthcoming paper@11#.

This work was supported by the DFG through Grant N
SSP 470.
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FIG. 5. Probability for a classical and quantum particle to s
within the chaotic componentupu,1.8 (v50.3, F'0.02). Dotted
line: classical result, solid line: quantum result provided the con
tion TB5Tv (\50.5), dashed line: ‘‘incommensurate’’ case (\
50.5109531). In the quantum case the curves were obtained
simulating wave packet dynamics with minimal uncertainty pac
centered atx50, p50 as an initial condition.
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